高数题目及答案详解(数学高数题目及答案)

我想要一些高等数学竞赛的试题及答案,谢谢了?

2002电子科大高等数学竞赛试题与解答

一、选择题(40分,每小题4分,只有一个答案正确).

1.设 在 ( )上连续,且为非零偶函数, ,则 (B).

(A)是偶函数; (B)是奇函数;

(C)是非奇非偶函数; (D)可能是奇函数,也可能是偶函数.

2.设 在 上连续,且 ,则……………………………………(D).

(A)在 内不一定有 使 ; (B)对于 上的一切 都有 ;

(C)在 的某个小区间上有 ;(D)在 内至少有一点使 .

3.已知当 时, 的导数 与 为等价无穷小,则 ………………………………………………………………………………………(B).

(A)等于0; (B)等于 ; (C)等于1; (D)不存在.

4.设 是微分方程 的满足 , 的解,则 ………………………………………………………………………………(B).

(A)等于0; (B)等于1; (C)等于2; (D)不存在.

5.设直线L: ,平面 : ,则它们的位置关系是 (C).

(A) ; (B)L在 上; (C) ; (D)L与 斜交.

6.设在全平面上有 , ,则保证不等式 成立的条件是………………………………………………………………………………(A).

(A) , ; (B) , ;

(C) , ; (D) , .

7.设S为八面体 全表面上半部分的上侧,则不正确的是………(D).

(A) ;(B) ;(C) ;(D) .

8.设常数 ,则级数 是……………………………(A).

(A)条件收敛; (B)绝对收敛; (C)发散; (D)敛散性与 有关

9.设A、B都是 阶非零矩阵,且 ,则A和B的秩…………………………(D).

(A)必有一个等于零;(B)都等于 ;(C)一个小于 ,一个等于 ;(D)都小于 .

10.设A是3阶可逆矩阵,且满足 , ( 为A的伴随矩阵),则A的三个特征值是………………………………………………………………………(C).

(A)3,3, ; (B) , ,2; (C)3, , ; (D) ,2,2.

二、(8分)设 在 的邻域具有二阶导数,且 ,试求 , 及 .

[解]

由得

(或由泰勒公式得 )

三、(8分)设 及 ,求 .

[解]

.

四、(8分)设函数 满足 与 , ,求 , , ( 表示 对 的一阶偏导数,其他类推).

[解]等式 两端对x求导,得

. 这两个等式,对x求导得

,

由已知条件得 ,故解得 , .

五、(8分)设向量组 , ,…, 是齐次线性方程组 的一个,向量 不是方程组 的解,即 ,试证明:向量组 , , ,…, .

[证]设有一组数 使得 ,即

两边左乘A,得 ,

,即 , 为 的

。故 。

六、(10分)已知三元二次型 经正交变换化为 ,又知 ,其中 , 为A的,求此二次型的表达式.

[解]由条件知A的特征值为 ,则 , 的特征值为 , A*的特征值为 ,由已知 是A*关于 的特征向量,也就是 是A关于 的特征向量,设A

关于 的特征向量为 , 是实对称阵, 与X要正交, 解出 .令 ,则 , 故

七、(8分)设S是以L为边界的光滑曲面,试求可微函数 使曲面积分

与曲面S的形状无关.

[解]以L为边界任作两个光滑曲面 ,它们的法向量指向同一例, ,记 为 与 所围成的闭曲面,取外侧,所围立体为 ,则 ,由高斯公式得 ,由 的任意性得 , 即 解线性非齐次方程得 .

八、(10分)设一球面的方程为 ,从原点向球面上任一点Q处的切平面作垂线,垂足为点P,当点Q在球面上变动时,点P的轨迹形成一封闭曲面S,求此封闭曲面S所围成的立体 的体积.

[解]设点Q为 ,则球面的切平面方程为 垂线方程为 代入 及切平面方程得 , ,即 (P点轨迹).化为球坐标方程得 .

.

九、(10分)设函数 在 ( )上连续,在 可导,且 .

(1)求证: , ,等式 成立.

(2)求极限 .

[证](1)令 , ,由中值定理得

, .

(2)由上式变形得 ,两边取极限, , , , , .

十、(10分)设函数 在( , )连续,周期为1,且 ,函数 在[0,1]上有连续导数,设 ,求证:级数 收敛.

[证]由已知条件 ,令

则 为周期为1的函数,且 ,

因此

= , 连续、周期,

有界, ,使 ,有 ,即 ,

又 在 连续, ,使 ,有 ,

故 ,由正项级数比较法知 收敛.

我想要一些高等数学竞赛的试题及答案,谢谢了?

2002电子科大高等数学竞赛试题与解答

一、选择题(40分,每小题4分,只有一个答案正确).

1.设 在 ( )上连续,且为非零偶函数, ,则 (B).

(A)是偶函数; (B)是奇函数;

(C)是非奇非偶函数; (D)可能是奇函数,也可能是偶函数.

2.设 在 上连续,且 ,则……………………………………(D).

(A)在 内不一定有 使 ; (B)对于 上的一切 都有 ;

(C)在 的某个小区间上有 ;(D)在 内至少有一点使 .

3.已知当 时, 的导数 与 为等价无穷小,则 ………………………………………………………………………………………(B).

(A)等于0; (B)等于 ; (C)等于1; (D)不存在.

4.设 是微分方程 的满足 , 的解,则 ………………………………………………………………………………(B).

(A)等于0; (B)等于1; (C)等于2; (D)不存在.

5.设直线L: ,平面 : ,则它们的位置关系是 (C).

(A) ; (B)L在 上; (C) ; (D)L与 斜交.

6.设在全平面上有 , ,则保证不等式 成立的条件是………………………………………………………………………………(A).

(A) , ; (B) , ;

(C) , ; (D) , .

7.设S为八面体 全表面上半部分的上侧,则不正确的是………(D).

(A) ;(B) ;(C) ;(D) .

8.设常数 ,则级数 是……………………………(A).

(A)条件收敛; (B)绝对收敛; (C)发散; (D)敛散性与 有关

9.设A、B都是 阶非零矩阵,且 ,则A和B的秩…………………………(D).

(A)必有一个等于零;(B)都等于 ;(C)一个小于 ,一个等于 ;(D)都小于 .

10.设A是3阶可逆矩阵,且满足 , ( 为A的伴随矩阵),则A的三个特征值是………………………………………………………………………(C).

(A)3,3, ; (B) , ,2; (C)3, , ; (D) ,2,2.

二、(8分)设 在 的邻域具有二阶导数,且 ,试求 , 及 .

[解]

由得

(或由泰勒公式得 )

三、(8分)设 及 ,求 .

[解]

.

四、(8分)设函数 满足 与 , ,求 , , ( 表示 对 的一阶偏导数,其他类推).

[解]等式 两端对x求导,得

. 这两个等式,对x求导得

,

由已知条件得 ,故解得 , .

五、(8分)设向量组 , ,…, 是齐次线性方程组 的一个,向量 不是方程组 的解,即 ,试证明:向量组 , , ,…, .

[证]设有一组数 使得 ,即

两边左乘A,得 ,

,即 , 为 的

。故 。

六、(10分)已知三元二次型 经正交变换化为 ,又知 ,其中 , 为A的,求此二次型的表达式.

[解]由条件知A的特征值为 ,则 , 的特征值为 , A*的特征值为 ,由已知 是A*关于 的特征向量,也就是 是A关于 的特征向量,设A

关于 的特征向量为 , 是实对称阵, 与X要正交, 解出 .令 ,则 , 故

七、(8分)设S是以L为边界的光滑曲面,试求可微函数 使曲面积分

与曲面S的形状无关.

[解]以L为边界任作两个光滑曲面 ,它们的法向量指向同一例, ,记 为 与 所围成的闭曲面,取外侧,所围立体为 ,则 ,由高斯公式得 ,由 的任意性得 , 即 解线性非齐次方程得 .

八、(10分)设一球面的方程为 ,从原点向球面上任一点Q处的切平面作垂线,垂足为点P,当点Q在球面上变动时,点P的轨迹形成一封闭曲面S,求此封闭曲面S所围成的立体 的体积.

[解]设点Q为 ,则球面的切平面方程为 垂线方程为 代入 及切平面方程得 , ,即 (P点轨迹).化为球坐标方程得 .

.

九、(10分)设函数 在 ( )上连续,在 可导,且 .

(1)求证: , ,等式 成立.

(2)求极限 .

[证](1)令 , ,由中值定理得

, .

(2)由上式变形得 ,两边取极限, , , , , .

十、(10分)设函数 在( , )连续,周期为1,且 ,函数 在[0,1]上有连续导数,设 ,求证:级数 收敛.

[证]由已知条件 ,令

则 为周期为1的函数,且 ,

因此

= , 连续、周期,

有界, ,使 ,有 ,即 ,

又 在 连续, ,使 ,有 ,

故 ,由正项级数比较法知 收敛.

高数一道定积分求旋转体体积的题目,有图有答案求详细过程

  • 第三小题,请问红线部分根据图像不是应该是(2x-1)^2-(x^2)^2吗?为什么反过来了
  • 1.这道高数题,定积分求旋转体体积的题目,图中答案第三小题红线部分是正确的。2.定积分求旋转体体积的题目,图中答案第三小题红线部分,注意是求图一中阴影部分围成图形绕x轴的旋转体的体积。3.此旋转体体积的题目,是两个体积差。就是图二的阴影部分绕x轴的旋转题体积,减去图三的阴影部分绕x轴的旋转体体积。4.图二中对于曲线是抛物线,图三中曲线是直线。所以,红线部分是对的,不能反过来的。

高数一道二重积分的题目,有图有答案求详细过程

  • 请问第二张图的运算,把x平方提到前面的定积分里,这可以吗?图三把图像看做y型的,请问红线部分的微分怎么算啊
  • 方法如下,请作参考,祝学习愉快:

高数一道导数的题目,有图有答案求过程

  • 请问图二中cosx的平方是怎么消去的
  • x→0,cosx→1啊,cosx的平方就是撒

高数一道高数极限计算的题目,有答案有过程,求大神解答

  • 请问第二个红圈那里是不是漏写一个负号呢
  • lim(x-0+) x^(sinx)=lim(x-0+) e^(sinx.lnx)=lim(x-0+) e^(lnxcscx) (∞∞ 分子分母分别求导)=lim(x-0+) e^[(1x)(cscx.cotx)]=lim(x-0+) e^[(tanxx).sinx ]=e^0=1

高数一道微分方程的题目,有图有答案,对过程有疑惑,求大神指点

  • 图二两条红线的式子是怎么来的呢
  • 详情如图所示有任何疑惑,欢迎追问

求打勾的题目的答案 高数

  • 求打勾的题目的答案 高数
  • 全部给你解答了!如下见谅

大学高数题目…求答案

  • 大学高数题目…求答案
  • 稍等我,有点忙。等我下班的再给你作
版权声明