求几篇科技小论文或者科技方面的社会调查报告 科技小论文调查报告怎么写

求几篇科技小论文或者科技方面的社会调查报告

科技小论文范文1:树干为什么是圆的 在观察大自然的过程中我偶然发现,树干的形态都近似圆的——空圆锥状。树干为什么是圆锥状的?圆锥状树干有哪些好处?为了探索这些问题,我进行了更深入的观察、分析研究。  在辅导老师的帮助下,我查阅了有关资料,了解到植物的茎有支持植物体、运输水分和其他养分的作用。树木的茎主要由维管束构成。茎的支持作用主要由木质部木纤维承担,虽然木本植物的茎会逐年加粗,但是在一定时间范围内,茎的木纤维数量是一定的,也就是树木茎的横截面面积一定。接着,我们围绕树干横截面面积一定,假设树干横截面长成不同形状,设计试验,探索树干呈圆锥状的原因和优点。  经过实验,我们发现:(1)横截面积和长度一定时,三棱柱状物体纵向支持力最大,横向承受力最小;圆柱状物体纵向支持力不如三棱柱状物体,但横向承受力最大;(2)等质量不同形状的树干,矮个圆锥体形树干承受风力最大;(3)风是一种自然现象,影响着树木横截面的形状和树木生长的高矮。近似圆锥状的树干,重心低,加上庞大根系和大地连在一起,重心降得更低,稳度更大;(4)树干横截面呈圆形,可以减少损伤,具有更强的机械强度,能经受住风的袭击。同时,受风力的影响,树干各处的弯曲程度相似,不管风力来自哪个方向,树干承受的阻力大小相似,树干不易受到破坏。  以上的实验反映了自然规律、自然界给我们启示:(1)横截面呈三角形的柱状物体,具有最大纵向支持力,其形态可用于建筑方面,例如角钢等;(2)横截面是圆形的圆状物体,具有最大的横向承受力,类似形态的建筑材料随处可见,如电视塔、电线杆等。   在我的观察、试验和分析过程中,逐渐解释、揭示了树干呈圆锥状的奥秘,增长了知识,把学到的知识联系实际加以应用,既巩固了学到的知识,又提高了学习的兴趣,还初步学会了科学观察和分析方法。范文2:皮鞋为什么越擦越亮每到星期天,我总要完成妈妈交给我的擦鞋任务。告诉你,这可是我一星期零花钱的来源哦!拿到沾满灰尘的皮鞋后,我先把鞋面的灰尘擦掉,然后涂上鞋油,仔仔细细地擦一擦,皮鞋就会变得又亮又好看了。可这是为什么呢  我找了同样牌子同样款式的新旧两双皮鞋进行对比观察。我先用手触摸两双皮鞋的鞋面,发现新皮鞋的表面比旧皮鞋的表面光滑得多。旧皮鞋涂上鞋油,仔细擦过后,虽然亮了许多,但仍无法与新皮鞋相比。皮鞋的亮度是否与鞋面的光滑程度有关呢?  我取来一双没擦过的旧皮鞋,在放大镜下鞋面显得凹凸不平的。然后,我再在皮鞋上圈出两块表面都比较粗造的A区和B区,A区涂上鞋油并仔细擦拭,B区不涂鞋油作空白对照。我发现A区擦拭后,表面明显变光滑了许多,而且放在阳光下也比B区有光泽。为什么两者会产生这样的差别呢?  我想到在物理课上老师曾经讲过:影剧院墙壁的表面是凹凸不平的,这样可以使声音大部分被吸收掉,让观众不受回声的干扰。同样道理,光线照到任何物体的表面都会产生反射,假如这个平面是高低不平的,光线就会向四面八方散射掉;假如这个平面是光滑的,那么我们就可以在一定的方向上看到反射光。  皮鞋的表面原来就不是绝对的光滑,如果是旧皮鞋,它的表面当然更加的不平,这样它就不能使光线在一定的方向上产生反射,所以看上去没有什么光泽。而鞋油中有一些小颗粒,擦鞋的时候这些小颗粒正好可以填入皮鞋表面的凹坑中。如果再用布擦一擦,让鞋油涂得更均匀些,就会使皮鞋的表面变得光滑、平整,反射光线的能力也加强了。  通过实验,我终于知道了皮鞋越擦越亮的秘密啦!范文3:醋对花卉有什么影响醋是生活中常用的调味品,花卉则能净化生态环境,并美化我们的生活。  你是否想到过,醋和花卉有什么关系呢?我们怀着好奇心,开展了这个课题的探究。据富有种花经验的人告诉我们,对盆栽花卉施些醋溶液,可改善盆花的生长,增加花朵,而且花艳叶茂。这一点我们在实验中很快就证实了。  浓度不同的醋溶液,对花卉有不同的影响吗?这是我们第二阶段的实验。我们选取长势相同的满天星、报春花、月亮花各四盆,分为四组,每组(三盆)各有三种花卉,分别编号、贴上标签。同时,我们取食用白醋配制成1%(pH值为2~3)、0.01%(pH值≈4)、0.0001%(pH值≈6)三种浓度不同的溶液,每天分别给三组盆花固定喷洒一种醋液,第四组盆花洒不含醋的清水。每五天观察记录花卉的生长情况。  这项实验的结果是:喷洒低浓度醋液(pH值≈6)对这几种花卉没有明显影响;喷洒中等浓度醋液(pH值≈4)的花卉明显长得比其他几组好,花苞多,开花期提前,而且花色较浓艳,花期也延长了;喷洒pH值2-3的高浓度醋液后,反而使花朵过早凋萎。  通过这次实验,我们可以告诉你:种花时适当喷洒一些醋液,可使花卉长得更好。不过要掌握好醋液的浓度,醋酸过浓则会伤害花卉。

延伸阅读

大学生论文范文格式怎么写

1、题目:毕业论文的题目最好是简明扼要,有概括性,必须通过标题就能概括说明整篇论文的主要内容,题目字数不宜超过20字;

2、封面:页面设置:论文页边距:上30mm,下25mm,左25mm,右25mm,页眉20 mm、页脚15 mm;题目、作者、学院、专业、学号、指导教师:二号黑体;日期:必须用中文填写

3、目录:“目录”二字为小二号黑体,居中打印:下空一行为章、节、小节及其开始页码(小四宋体)。章、节、小节分别以第1章、1.1、1.1.1等数字依次标出。

4、正文:每章标题以三号黑体居中打印;章下空二行为节,以四号黑体左起打印,节下空一行为小节,以小四号黑体左起打印。换行后以小四号宋体打印正文。

5、参考文献:在论文中所引用过的文献,一般都应列出来。格式为:序号、作者姓名、书或文章名称、出版单位、出版时间、章节与页码等。在论文中应用参考文献处,应注明该文献的序号。

6、如果在论文中有什么需要补充的可以采用附录的格式:装订次序要求?封面、任务书、目录、中文摘要、外文摘要、论文(前言、正文、结论、讨论和建议、致谢、参考文献)、毕业设计小结、附录、封底。

大学数学论文范文

数学与生活

自从懂事以来,数学就已进入了我们的生活,数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。

数学是一门给人智慧、让人聪明的学科,在数学的世界中,我们可以探索以前所不知道的神秘,在这个过程中我们变得睿智、变得聪明。

由于以前选择了文科,所以到大学才接触到危机分的知识,也开始了对微积分的探索,现在可以说是略知一、二了,在此期间间间的了解到微积分的美好,以及新引力的强大。但学习微积分的过程是困难与艰辛的,与此同时,我也了解到——数学是一种寻求众所周知的公理法思想的方法,这种方法包括明确的表述出将要讨论的概念的含义,以及准确的表述出作为推理基础的公设。具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。同时数学是一门需要创造性的科学,而数学的这些创造性的动力往往来自于生活。反过来,数学的这些创造性地成果往往又作用于生活的各个方面。例如,商业和金融事务、航海和历法的计算、桥梁、水坝、教堂和供电的建造、作战武器和工事的设计,以及许多人类的需要。与此同时,数学又能对这些问题给出最完满的解决。在我们高速发展的社会中,数学被当作普遍工具的事实更是毋庸置疑的。

在我们的日常生活中,微积分确确实实的存在着,只是我们缺少善于发现的精神而已。比如说,我们在养花,而花瓶中水过多了,我们这时就要倒出部分水,这是上活中的公式就产生了,这个问题是:我们要将瓶子倾斜多少度时才能降水倒出一半来?这是微积分就派上用场了。

假设花瓶的纵截面是抛物线

Y=ax^2(a>0)

首先,先算出瓶子直立水满时的体积用一个积分就可以了,结果等于V=πh^2/(2a);

第二步,假设倾斜角为α,正好倒掉了一半的水,重新建立坐标系,令此时瓶的对称轴为y轴,垂直于瓶的对称轴的射线为x轴,然后将坐标系还原为常规正立的图形,此时瓶里水的横截面图像为抛物线和水面所在直线的公共部分,注意此时水面所在直线与x轴的倾角是刚好为题目所提到的倾斜角α(如原图所示,倾斜后的水平面此时与x轴平行,因此水面与瓶的对称轴的夹角为90-α,也即在新建坐标系下,水面所在直线与y轴的夹角也为90-α,因此它与x轴的夹角为α)。

所以可以设该直线方程为

y=tanα*x+b

假设直线与抛物线的交点为A(x0,y0),B(sqrt(h/a),h))(左A,右B)(B点的纵坐标显然等于瓶子的高度h),先利用B点坐标求出直线的截距b,然后联立直线与抛物线方程可以求的A点坐标;

第三步,就是求此时瓶中水的体积,可以将图像分为两部分,

一部分是直线y=y0与抛物线所交部分,第二部分是直线y=y0、直线y=tanα*x+b及抛物线y=ax^2(a>0)相交部分。第一部分体积为V1=∫π*(x^2)dy=∫π*y/ady(积分上下限为0和y0);

第二部分体积为V2=∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h);因此根据: V1+V2=V/2=π*h^2/(4a)=∫π*y/ady(积分上下限为0和y0)+∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h)可以解得所求α值。

这就是数学于生活紧密联系在一起了,如果数学不能和生活紧密联系在一起,那么数学将变得空洞无力。

著名数学家罗素曾说:“数学如果正确看待他,则具有……至高无上的美——正像雕像的美,是一种冷而严肃的美,这种每部石头和我们的天性的微弱的美,这些煤没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。一种精神上的喜悦,一种精神上的亢奋,一种高于人的意识的,这些是至善至美的标准,能够在诗里得到,也能够在数学里得到”这就表明伟大的人物因为有一双善于发现美的眼睛所以他看到了数学隐藏的魅力。除了创造性和发现,想象也是可以使数学在我们思想中得到升华的。

学了很久的数学了,明卖弄百数学的源远流长于高深莫测,他引领着前进的道路。Hankel,Hermann 说:数学沿着他自己的道路而无拘无束的前进着,这并不是因为他有什么不受法律约束之类的种种许可证,而是因为数学本来就具有一种由其本性所决定的并且与其存在相符合的自由无益的是数学在生活中独特而不可或缺,失去了数学科技水平将倒退。这不是耸人听闻,这是对数学这门使人精密学科的肯定,这是不可置否的。

数学不是规律的发现者,因为它不是归纳。数学也不是理论的缔造者,因为它不是假说。但数学确实规律和假说的裁判和主宰者,因为规律和假说都要向数学表明自己的主张,然后等待数学的裁判。如果没有数学的认可,则规律不能起作用,理论也不能解释。(来自数学的文化)

数学是重要的,生活不能离开数学,国防发展与科技进步也不能离开数学。在遥远的古代中国是引领世界的,因为那时的勤劳人民已发现了数学算筹、《九章算术》……这都是历史留下来的论据。一个国家的强大离不开数学的精密计算。21世纪的今天中国已傲然屹立于世界民族之林,为了使国际地位不断提升,我们必须坚定的发展研究数学。

版权声明