跪求30道,因式分解,题目及答案?
展开全部
十字相乘法
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。其实就是运用乘法公式(x+a)(x+b)=x2+(a+b)x+ab的逆运算来进行因式分解。
如:
a2x2+ax-42
首先,我们看看第一个数,是a2,代表是两个a相乘得到的,则推断出(a ×+?)×(a ×+?),
然后我们再看第二项, +ax这种式子是经过合并同类项以后得到的结果,所以推断出是两项式×两项式。
再看最后一项是-42 ,-42是-6×7 或者6×-7也可以分解成 -21×2 或者21×-2。
首先,21和2无论正负,通过任意加减后都不可能是1,只可能是-19或者19,所以排除后者。
然后,再确定是-7×6还是7×-6。
(a×-7)×(a×+6)=a2x2-ax-42(计算过程省略)
得到结果与原来结果不相符,原式+ax 变成了-ax。
再算:
(a×+7)×(a×+(-6))=a2x2+ax-42
正确,所以a2x2+ax-42就被分解成为(ax+7)×(ax-6),这就是通俗的十字相乘法分解因式。
公式法
公式法,即运用公式分解因式。
公式一般有
1、平方差公式a2-b2=(a+b)(a-b)
2、完全平方公式a2±2ab+b2=(a±b)2
3因式分解编辑
十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法式法,换元法,长除法,短除法,除法等。
注意四原则:
1.分解要彻底(是否有公因式,是否可用公式)
2.最后结果只有小括号
3.最后结果中多项式首项系数为正(例如:-3×2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=
-x(2+3y+4z)
归纳方法:
1.提公因式法。
2.运用公式法。
3.拼凑法。
提取公因式法
各项都含有的公共的因式叫做这个多项式各项的公因式.公因式可以是单项式,也可以是多项式。
如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。
具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。
口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。
例如:
注意:把
变成
不叫提公因式
公式法
根据因式分解与整式乘法的关系,我们可以利用乘法公式把某些多项式因式分解,这种因式分解的方法叫做公式法
如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。
平方差公式:
反过来为
完全平方公式:
反过来为
反过来为
注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。
两根式:
立方和公式:a3+b3=(a+b)(a2-ab+b2)
立方差公式:a3-b3=(a-b)(a2+ab+b2)
完全立方公式:a3±3a2b+3ab2±b3=(a±b)3
公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)
例如:a2+4ab+4b2 =(a+2b)2
1.分解因式技巧掌握:
①分解因式是多项式的恒等变形,要求等式左边必须是多项式。
②分解因式的结果必须是以乘积的形式表示。
③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
④分解因式必须分解到每个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。
2.提公因式法基本步骤:
(1)找出公因式
(2)提公因式并确定另一个因式
①第一步找公因式可按照确定公因式的方法先确定系数再确定字母
②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式
③提完公因式后,另一因式的项数与原多项式的项数相同
解方程法
通过解方程来进行因式分解,如:
X2+2X+1=0 ,解,得X1=-1,X2=-1,就得到原式=(X+1)×(X+1)
4分解方法编辑
分组分解法
分组分解是分解因式的一种简洁的方法,下面是这个方法的详细讲解。
能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。
比如:
ax+ay+bx+by
=a(x+y)+b(x+y)
=(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。
同样,这道题也可以这样做。
ax+ay+bx+by
=x(a+b)+y(a+b)
=(a+b)(x+y)
几道例题:
1. 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)
说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。
2. x2-x-y2-y
解法:=(x2-y2)-(x+y)
=(x+y)(x-y)-(x+y)
=(x+y)(x-y-1)
利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。
三一分法,例:a^2-b^2-2bc-c^2
=a^2-(b+c)^2
=(a-b-c)(a+b+c)
十字相乘法
十字相乘法在解题时是一个很好用的方法,也很简单。
这种方法有两种情况。
①x2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) .
例1:x2-2x-8
=(x-4)(x+2)
②kx2+mx+n型的式子的因式分解
如果有k=ab,n=cd,且有ad+bc=m时,那么kx2+mx+n=(ax+c)(bx+d).
例2:分解7×2-19x-6
图示如下:a=7 b=1 c=2 d=-3
因为 -3×7=-21,1×2=2,且-21+2=-19,
所以,原式=(7x+2)(x-3).
十字相乘法口诀:分二次项,分常数项,交叉相乘求和得一次项。
例3:6X2+7X+2
第1项二次项(6X2)拆分为:2×3
第3项常数项(2)拆分为:1×2
2(X) 3(X)
1 2
对角相乘:1×3+2×2得第2项一次项(7X)
纵向相乘,横向相加。
十字相乘法判定定理:若有式子ax2+bx+c,若b2-4ac为完全平方数,则此式可以被十字相乘法分解。
与十字相乘法对应的还有双十字相乘法,也可以学一学。
拆添项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。
例如:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=(bc+ca)(c-a)+(bc-ab)(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b).
配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。
例如:x2+3x-40
=x2+3x+2.25-42.25
=(x+1.5)2-(6.5)2
=(x+8)(x-5).
因式定理
对于多项式f(x),如果f(a)=0,那么f(x)必含有因式x-a.
例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).)
注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数
2.对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数
换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。注意:换元后勿忘还元。
例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x2+x,则
原式=(y+1)(y+2)-12
=y2+3y+2-12=y2+3y-10
=(y+5)(y-2)
=(x2+x+5)(x2+x-2)
=(x2+x+5)(x+2)(x-1).
综合除法
令多项式f(x)=0,求出其根为x1,x2,x3,……,xn,则该多项式可分解为f(x)=a(x-x1)(x-x2)(x-x3)……(x-xn) .
例如在分解2×4+7×3-2×2-13x+6时,令2×4 +7×3-2×2-13x+6=0,
则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.
所以2×4+7×3-2×2-13x+6=(2x-1)(x+3)(x+2)(x-1).
令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1,x2,x3,……xn ,则多项式可因式分解为f(x)= f(x)=a(x-x1)(x-x2)(x-x3)……(x-xn).
与方法⑼相比,能避开解方程的繁琐,但是不够准确。
主元法
例如在分解x3+2×2-5x-6时,可以令y=x3+2×2-5x-6.
作出其图像,与x轴交点为-3,-1,2
则x3+2×2-5x-6=(x+1)(x+3)(x-2)
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
特殊值法
将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
例如在分解x3+9×2+23x+15时,令x=2,则
x3+9×2+23x+15=8+36+46+15=105,
将105分解成3个质因数的积,即105=3×5×7 .
注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,
则x3+9×2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。
待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例如在分解x4-x3-5×2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。
于是设x4-x3-5×2-6x-4=(x2+ax+b)(x2+cx+d)
相关公式
=x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd
由此可得
a+c=-1,
ac+b+d=-5,
ad+bc=-6,
bd=-4.
解得a=1,b=1,c=-2,d=-4.
则x4-x3-5×2-6x-4=(x2+x+1)(x2-2x-4).
也可以参看右图。
双十字相乘法
双十字相乘法属于因式分解的一类,类似于十字相乘法。
双十字相乘法就是二元二次六项式,启始的式子如下:
ax2+bxy+cy2+dx+ey+f
x、y为未知数,其余都是常数
用一道例题来说明如何使用。
例:分解因式:x2+5xy+6y2+8x+18y+12.
分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。
解:图如下,把所有的数字交叉相连即可
x 2y 2
x 3y 6
∴原式=(x+2y+2)(x+3y+6).
双十字相乘法其步骤为:
①先用十字相乘法分解2次项,如十字相乘图①中x2+5xy+6y2=(x+2y)(x+3y)
②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y2+18y+12=(2y+2)(3y+6)
③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。
④纵向相乘,横向相加。
二次多项式
(根与系数关系二次多项式因式分解)
例:对于二次多项式 aX2+bX+c(a≠0)
.
当△=b2-4ac≥0时,设aX2+bX+c=0的解为X1,X2
=a(X2-(X1+X2)X+X1X2)
=a(X-X1)(X-X2).
5分解步骤编辑
①如果多项式的各项有公因式,那么先提公因式;
②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解
④分解因式,必须进行到每一个多项式因式都不能再分解为止。
也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”
6例题编辑
1.分解因式(1+y)2-2×2(1+y2)+x4(1-y)2.
解:原式=(1+y)2+2(1+y)x2(1-y)+x4(1-y)2-2(1+y)x2(1-y)-2×2(1+y2)(补项)
=[(1+y)+x2(1-y)]2-2(1+y)x2(1-y)-2×2(1+y2)(完全平方)
=[(1+y)+x2(1-y)]2-(2x)2
=[(1+y)+x2(1-y)+2x][(1+y)+x2(1-y)-2x]
=(x2-x2y+2x+y+1)(x^2-x2y-2x+y+1)
=[(x+1)2-y(x2-1)][(x-1)2-y(x2-1)]
=[(x+1)2-y(x+1)(x-1)][(x-1)2-y(x+1)(x-1)]
=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).
2.求证:对于任何整数x,y,下式的值都不会为33:
x5+3x4y-5x3y2-15x2y3+4xy4+12y5.
解:原式=(x5+3x4y)-(5x3y2+15x2y3)+(4xy4+12y5)
=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)
=(x+3y)(x4-5x2y2+4y4)
=(x+3y)(x2-4y2)(x2-y2)
=(x+3y)(x+y)(x-y)(x+2y)(x-2y).
当y=0时,原式=x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。
3..△ABC的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证:这个三角形是等腰三角形。
分析:此题实质上是对关系式的等号左边的多项式进行因式分解。
证明:∵-c2+a2+2ab-2bc=0,
∴(a+c)(a-c)+2b(a-c)=0.
∴(a-c)(a+2b+c)=0.
∵a、b、c是△ABC的三条边,
∴a+2b+c>0.
∴a-c=0,
即a=c,△ABC为等腰三角形。
4.把-12x2n×yn+18xn+2yn+1-6xn×yn-1分解因式。
解:-12x2n×yn+18xn+2yn+1-6xn×yn-1
=-6xn×yn-1(2xn×y-3x2y2+1).
7四个注意编辑
因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举下例,可供参考。
例1 把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-[(a-b)2-4]=-(a-b+2)(a-b-2)
这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9×2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。
这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。
分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4×4-5×2-9)=y(x+1)(4×2-9)的错误,因为4×2-9还可分解为(2x+3)(2x-3)。
考试时应注意:
在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!
由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。
8应用编辑
1. 应用于多项式除法。
:a(b?1)(ab+2b+a)
说明:(ab+b)2?(a+b)2 = (ab+b+a+b)(ab+b?a?b) = (ab+2b+a)(ab?a) = a(b?1)(ab+2b+a).
2. 应用于高次方程的求根。
3. 应用于分式的通分与约分
顺带一提,梅森合数分解已经取得一些微不足道的进展:
1,p=4r+3,如果8r+7也是素数,则:(8r+7)|(2P-1)。即(2p+1)|(2P-1)
例如:
23|(211-1);;11=4×2+3
47|(223-1);;23=4×5+3
167|(283-1);,,,.83=4×20+3
2,p=2n×32+1,,则(6p+1)|(2P-1),
例如:223|(237-1);37=2×2×3×3+1
439|(273-1);73=2×2×2×3×3+1
3463|(2577-1);577=2×2×2×2×2×2×3×3+1
3,p=2n×3m×5s-1,则(8p+1)|(2P-1)
例如;233|(229-1);29=2×3×5-1
1433|(2179-1);179=2×2×3×3×5-1
1913|(2239-1);239=2×2×2×2×3×5-1
9分解公式编辑
平方差公式
(a+b)(a-b)=a2-b2
完全平方公式
(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
立方和(差)
两数差乘以它们的平方和与它们的积的和等于两数的立方差。
即a3-b3=(a-b)(a2+ab+b2)
证明如下:( a-b)3=a3-3a2b+3ab2-b3
所以a3-b3=(a-b)3-[-3(a2)b+3ab2]=(a-b)(a-b)2+3ab(a-b)
=(a-b)(a2-2ab+b2+3ab)=(a-b)(a2+ab+b2)
同理 a3+b3=(a+b)(a2-ab+b2)
十字相乘公式
十字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。
(x+a)(x+b)=x2+(a+b)x+ab
不知道需要什么难度的,所以还是答方法
初二数学 因式分解 题目 求解
- 1。(a-b)+2m(a-b)-m(b-a)2。125a(b-1)-100a(1-b)3。14m+2mn+4n4。-a+2ab-b5。25(3x-y)-36(3x+y)6。a-2a+a-1劳驾各位了。谢谢!上课没听懂,所以请教一下!
- 1)提取公因式a-b,原式=(a-b)[1+2m+m^2]= (a-b)(m+1)^22) 提取公因式25a(b-1), 原式=25a(b-1)(5a+4)3) 此为完全平方式,原式=(12*m^2+2n)^24) 提取负号,为完全平方式,原式=-(a^2-b^2)^2=-(a+b)^2 (a-b)^2, 5)平方差公式,原式=[5(3x-y)+6(3x+y)][5(3x-y)-6(3x+y)]=(33x+y)(-3x-11y)6) 可能抄错题了? a-a+a-1=a(a-1)+(a-1)=(a-1)(a+1)
因式分解题目
- 因式分解题目求解连步骤
- =3(1-9m^2)=3(1+3m)(1-3m)
求这题目的因式分解步骤
- 求这题目的因式分解步骤(R长处拜肺之镀瓣僧抱吉48;)第六条
- =3(x-y)+6a(x-y)=3(x-y)(1+2a)
数学题目用因式分解解方程(x-4)+8(x-4)+16=0
- 敞浮搬簧植毫邦桐鲍昆令y=x-4,则有y+8y+16=0即(y+4)=0所以y=-4,即x-4=-4所以x=0
急求!!30个因式分解的题目,平方差,完全,特殊三种公式题目各十个!!题目答案都要有!十分感谢!!
- 急求!!30个因式分解的题目,平方差,完全,特殊三种公式题目各十个!!题目答案都要有!十分感谢!!只有这点财富值了掸涪侧皇乇郝岔酮唱捆quq
- 1. 5ax+5bx+3ay+3by解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)2. x^3-x^2+x-1解法:=(x^3-x^2)+(x-1)=x^2(x-1)+ (x-1)=(x-1)(x^2+1)3. x2-x-y2-y解法:=(x2-y2)-(x+y)=(x+y)(x-y)-(x+y)=(x+y)(x-y-1)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b)=c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).x^2+3x-40=x^2+3x+2.25-42.25=(x+1.5)^2-(6.5)^2=(x+8)(x-5).(x^2+x+1)(x^2+x+2)-12时,可以令y=x^2+x,则原式=(y+1)(y+2)-12=y^2+3y+2-12=y^2+3y-10=(y+5)(y-2)=(x^2+x+5)(x^2+x-2)=(x^2+x+5)(x+2)(x-1).(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2 原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) x^5+3x^4y-5x^3y^2+4xy^4+12y^5 原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 分解因式m +5n-mn-5m m +5n-mn-5m= m -5m -mn+5n = (m -5m )+(-mn+5n) =m(m-5)-n(m-5) =(m-5)(m-n) 分解因式bc(b+c)+ca(c-a)-ab(a+b) bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 1.(2a-b)+8ab2.y-2y-x+13.x-xy+yz-xz4.6x+5x-45.2a-7ab+6b6.(x-2x)+2(x-2x)+17.(x-2x)&#……余下全文
(图)因式分解题目,求详细解答
- (图)窢贰促荷讵沽存泰担骏因式分解题目,求详细解答不知是怎么分解转化,望解答疑问谢谢T_T(数学渣)
- 这样
一道关于因式分解的题目
- 说理由问题补充:
- x+2xy+3y=34(x+2xy+y)+2y=34(x+y)+2y=34(x+y)=34-2y=2(17-y)平方项恒非负,(x+y)≥0,因此2(17-y)≥0y≤17,满足条件的y只有0、1、4、9、16(x+y)为整数的平方,又等式右边有因子2,因此17-y是一个完全平方数与2的乘积,是偶数。y为奇数,满足条件的y只有1、9y=1或y=-1或y=3或y=-3y=1时或y=-1时,(x+y)=32 32不是完全平方数,舍去y=3或y=-3时,(x+y)=16y=3时,(x+3)=16 x+3=4或x+3=-4 x=1或x=-7y=-3时,(x-3)=16 x-3=4或x-3=-4 x=7或x=-1综上,得共4组解:x=1 y=3;x=-7 y=3;x=7 y=-3;x=-1 y=-3,选B。本题不是因式分解的题目。
还有一题因式分解的题目
- 这个有没有别的条件了?感觉毫无头绪啊